
MODULE 2

 REQUIREMENT ANALYSIS AND DESIGN

 IMPORTANT QUESTIONS

1. Difference between functional and non functional requirements.

Functional
Requirements Non Functional Requirements

A functional
requirement defines a
system or its
component.

A non-functional requirement defines the quality
attribute of a software system.

It specifies “What
should the software
system do?”

It places constraints on “How should the software
system fulfill the functional requirements?”. Timing
constraints,constraints on the development
process,constrints imposed by standards.

Functional
requirement is
specified by User.

Non-functional requirement is specified by technical
peoples e.g. Architect, Technical leaders and software
developers.

2. Explain the metrics for specifying functional requirements?

3. Why requirements elicitation is considered as a critical task in requirements engineering?

Requirement Elicitation is a very difficult task. The process of requirements elicitation is generally

accepted as one of the critical activities in the Requirement Engineering process. Requirement

Elicitation is process and normally considered as a process of finding out what are the real need of

the customer from the system. Getting the right requirements is considered as a vital but difficult

part of software development projects. Requirement Elicitation is important and fundamental

aspect in Software development. Many problems occur at development and maintenance is due to

poor requirement gathering, management and requirement change management. Certain

techniques are used for requirement elicitation.

4. List the elements of requirement engineering process. ?

 Requirement Engineering Process It is a four step process, which includes –

 Feasibility Study, Requirement Gathering, Software Requirement Specification, Software

Requirement Validation.

5. Explain any three methods for requirements elicitation.

Requirements discovery (elicitation techniques)
The process of gathering information about the required and existing systems and distilling the
user and system requirements from this information. Interaction is with system stakeholders from
managers to external regulators. Systems normally have a range of stakeholders.

1. INTERVIEWs
2. SCENARIOS
3. ETHNOGRAPHY

1. Formal or informal interviews with stakeholders are part of most RE processes. Types of

interview
 Closed interviews : stakeholders answers based on pre-determined list of questions
 Open interviews : in which there is no predefined agenda, where various issues are explored with

stakeholders

Effective interviewing

 Be open-minded, avoid pre-conceived ideas about the requirements and are willing to listen to
stakeholders.

 Prompt the interviewee to get discussions going using a springboard question, a requirements
proposal, or by working together on a prototype system.

2.Scenarios are real-life examples of how a system can be used. They should include

 A description of the starting situation;

 A description of the normal flow of events;

 A description of what can go wrong;

 Information about other concurrent activities;

 A description of the state when the scenario finishes.

3.Ethnography

A social scientist spends a considerable time observing and analyzing how people actually work.
People do not have to explain or articulate their work.

 Social and organizational factors of importance may be observed.

 Ethnographic studies have shown that work is usually richer and more complex than suggested
by simple system models.

 Requirements that are derived from cooperation and awareness of other people’s activities.

 Awareness of what other people are doing leads to changes in the ways in which we do things.

 Ethnography is effective for understanding existing processes but cannot identify new features
that should be added to a system.
6. What are the contents we should contain in the SRS document and design document

SRS Document SRS document is a contract between the development team and the customer. Once

the SRS document is approved by the customer, any subsequent controversies are settled by

referring the SRS document. SRS document defines the customer’s requirements in terms of

Functions, performance, external interfaces and design constraints.

SRS Includes: • Functional • Non functional • User • Interface • System Design Document

The purpose of a design is to describe how the enhancements will be incorporated into the existing

project. It should contain samples of the finished product. This could include navigational

mechanism screenshots, example reports, and component diagrams.

Design Includes: • E-R Diagrams • Data flow diagrams • Data Dictionary.

7. Identify any four type of requirement defined for a software system?.

 User Requirements – User requirements are natural language statements that may be

accompanied by diagrams that show both the services the system is expected to provide the users, as

well as any constraints the system will operate under.

System Requirements – System requirements are more detailed descriptions of the software

system’s functions, services, and operational constraints. The exact implementation should be

defined and this document can serve as part of a contract between the system buyer and the

developers

Functional Requirements – Functional requirements are the statements of the services that the

system should provide, how the system handles specific input and how the system should behave in

a given situation.

Nonfunctional Requirements – Nonfunctional requirements refer to the contraints on the system’s

services or functions. These can include industry standards that must be followed such as timing,

security, etc. An example being that bank transactions most likely have to have encrypted

communications for certain operations, if not all. These constraints usually effect the entire system

rather than certain features or services.

8. List the components of SRS.

 Refer SRS template (for correct order)

9. Write the role of users of requirement document

10. Explain requirement validation?

11. Explain about Personas, use cases and scenarios ? (refer notes)

Personas are about “imagined users,” character portraits of types of user that you think might
adopt your product.

 Ex: if your product is aimed at managing appointments for dentists, you might create a dentist
persona, a receptionist persona, and a patient persona.
SCENARIOS

 A scenario is a narration that describes a situation in which a user is using your product’s
features to do something that they want to do.

 Scenarios are used in the design of requirements and system features, in system testing, and in
user interface design.
User Stories
These are finer-grain narratives that set out in a more detailed and structured way a single thing
that a user wants from a software system.

User stories are not intended for planning but for helping with feature identification.
Feature Identification

A feature is a way of allowing users to access and use your product’s functionality so that the
feature list defines the overall functionality ofthe system.

Feature is a fragment of functionality that implements some user or system need. We can access
features through user interface of a product.

Feature is something that the user needs or wants.
12. Define software architecture?.

The software architecture of a program or computing system is the structure or structures of the
system, which comprise software components, the externally visible properties of those
components, and the relationships among them.
Identify three key reasons that software architecture is important:

Software architecture provides a representation that facilitates communication among all
stakeholders.

The architecture highlights early design decisions that will have a profound impact on all
software engineering work that follows.

Architecture “constitutes a relatively small, intellectually graspable model of how the system is
structured and how its components work together”

13. Define software component?

 A component is a modular building block for computer software. The OMG Unified Modeling

Language Specification defines a component as “a modular, deployable, and replaceable part of a

system that encapsulates implementation and exposes a set of interfaces.”

14. List out the architectural styles? (Refer Notes- Important)

• Data-Centered Architecture

• Data-Flow Architectures

• Call and Return Architectures:

• Object-Oriented Architectures
• Layered Architectures

15. Define tracebility matrix .

A traceability matrix is a document that details the technical requirements for a given test
scenario and its current state. It helps the testing team understand the level of testing that is done
for a given product.

The traceability process itself is used to review the test cases that were defined for any
requirement. It helps users identify which requirements produced the most number of defects
during a testing cycle.

16. Discuss the steps for architectural design ? (Refer Notes for Explanation- important)
 1. Representing the System in Context

 2. Defining Archetypes
 3. Refining the Architecture into Components
 4. Describing Instantiations of the System.

17. Difference between Cohesion and coupling

Cohesion is an indication of the relative functional strength of a module. A cohesive module
performs a single task, requiring little interaction with other components in other parts of a
program.
Coupling is an indication of the relative interdependence among modules. Coupling depends on the
interface complexity between modules, the point at which entry or reference is made to a module,
and what data pass across the interface.
18. Explain the Types of cohesion and coupling ?
 Coincidental cohesion

• A module is said to have coincidental cohesion if it performs a set of tasks that relate to each
other very loosely, if at all.

• In this case, the module contains a random collection of functions. It is likely that the
functions have been put in the module out of pure coincidence without any thought or
design.

• For example, in a transaction processing system (TPS), the get-input, print-error, and
summarize- members

• Functions are grouped into one module.

Logical cohesion

• A module is said to be logically cohesive, if all elements of the module perform similar
operations, e.g. error handling, data input, data output, etc.

• An example of logical cohesion is the case where a set of print functions generating different
output reports are arranged into a single module.

Temporal cohesion
• When a module contains functions that are related by the fact that all the functions must be

executed in the same time span, the module is said to exhibit temporal cohesion.
• The set of functions responsible for initialization, start-up, a shutdown of some process, etc.

exhibit temporal cohesion.
Procedural cohesion

• A module is said to possess procedural cohesion, if the set of functions of the module are all
part of a procedure (algorithm) in which a certain sequence of steps have to be carried out
for achieving an objective, e.g. the algorithm for decoding a message.

Communicational cohesion
• A module is said to have communicational cohesion, if all functions of the module refer to or

update the same data structure, e.g. the set of functions defined on an array or a stack.
Sequential cohesion

• A module is said to possess sequential cohesion if the elements of a module form the parts
of the sequence, where the output from one element of the sequence is input to the next.

• For example, in a TPS, the get-input, validate-input, sort-input functions are grouped into
one module.

Functional cohesion
• Functional cohesion is said to exist if different elements of a module cooperate to achieve a

single function. For example, a module containing all the functions required to manage
employees’ pay-roll exhibits functional cohesion.

• Suppose a module exhibits functional cohesion and we are asked to describe what the
module does, then we would be able to describe it using a single sentence.

Coupling
Classification of Coupling

Data coupling

• Two modules are data coupled if they communicate through a parameter. An example is an
elementary data item passed as a parameter between two modules, e.g. an integer, float,
character, etc.

• This data item should be problem-related and not used for the control purpose.
Stamp coupling

• Two modules are stamp coupled if they communicate using a composite data item such as a
record in PASCAL or a structure in C.

Control coupling
• Control coupling exists between two modules if data from one module is used to direct the

order of instructions executed in another.
• An example of control coupling is a flag set in one module and tested in another module.

Common coupling
• Two modules are commonly coupled if they share data through some global data items.

Content coupling
• Content coupling exists between two modules if they share code, e.g. a branch from one

module into another module.

17. Define Use case ? .Differentiate between Primary actor and secondary actor.?
Use Case: A use case is a methodology used in system analysis to identify, clarify and organize
system requirements. The use case is made up of a set of possible sequences of interactions
between systems and users in a particular environment and related to a particular goal.

The primary actor is the one that initiates a use case and a secondary actor is the one that helps
completion of the use case through his specific support.

18. Explain design concepts of software Engineering ?(Refer notes for examples)

• Software design sits at the technical core of software engineering and is applied regardless
of the software process model that is used.

• The design task produces a data design, an architectural design, an interface design, and a
component design.

Abstraction

• A solution is stated in large terms using the language of the problem environment at the
highest level abstraction.

• The lower level of abstraction provides a more detail description of the solution.
• A sequence of instruction that contain a specific and limited function refers in a procedural

abstraction.
• A collection of data that describes a data object is a data abstraction.

Architecture

• The complete structure of the software is known as software architecture.
• Structure provides conceptual integrity for a system in a number of ways.
• The architecture is the structure of program modules where they interact with each other in

a specialized way.
• The components use the structure of data.
• The aim of the software design is to obtain an architectural framework of a system.
• The more detailed design activities are conducted from the framework.

Patterns

• A design pattern describes a design structure and that structure solves a particular design
problem in a specified content.

Modularity

• A software is separately divided into name and addressable components. Sometime they are
called as modules which integrate to satisfy the problem requirements.

• Modularity is the single attribute of a software that permits a program to be managed easily.

Information hiding

• Modules must be specified and designed so that the information like algorithm and data
presented in a module is not accessible for other modules not requiring that information.

Functional independence

• The functional independence is the concept of separation and related to the concept of
modularity, abstraction and information hiding.

• The functional independence is accessed using two criteria i.e Cohesion and coupling.
• Cohesion: Cohesion is an extension of the information hiding concept.
• A cohesive module performs a single task and it requires a small interaction with the other

components in other parts of the program.
• Coupling: Coupling is an indication of interconnection between modules in a structure of

software.

Refinement

• Refinement is a top-down design approach.
• It is a process of elaboration.
• A program is established for refining levels of procedural details.

• A hierarchy is established by decomposing a statement of function in a stepwise manner till
the programming language statement are reached.

Refactoring

• It is a reorganization technique which simplifies the design of components without
changing its function behavior.

• Refactoring is the process of changing the software system in a way that it does not change
the external behavior of the code still improves its internal structure.

Design classes

• The model of software is defined as a set of design classes.
• Every class describes the elements of problem domain and that focus on features of the

problem which are user visible.

19. List and state the basic design principles

The Open-Closed Principle (OCP). “A module [component] should be open for extension but closed
for modification.

The Liskov Substitution Principle (LSP). “Subclasses should be substitutable for their base classes”.

The Interface Segregation Principle (ISP). “Many client-specific interfaces are better than one
general purpose· interface”

The Release Reuse Equivalency Principle (REP). “The granule of reuse is the granule of release”

20 . Explain Design Model (refer notes for figures)

The design model can be viewed in two different dimensions.

The process dimension indicates the evolution of the design model as design tasks are executed as
part of the software process.

The abstraction dimension represents the level of detail as each element of the analysis model is
transformed into a design equivalent and then refined iteratively. The dashed line indicates the
boundary between the analysis and design models. The design model can be viewed in two
different dimensions. The process dimension indicates the evolution of the design model as design
tasks are executed as part of the software process. The abstraction dimension represents the level
of detail as each element of the analysis model is transformed into a design equivalent and then
refined iteratively. The dashed line indicates the boundary between the analysis and design models.

Data Design Elements

Data design (sometimes referred to as data architecting) creates a model of data and/or
information that is represented at a high level of abstraction (the customer/user’s view of data).
This data model is then refined into progressively more implementation-specific representations
that can be processed by the computer-based system.

Architectural Design Elements

The architectural design for software is the equivalent to the floor plan of a house. The floor plan
depicts the overall layout of the rooms; their size, shape, and relationship to one another; and the

doors and windows that allow movement into and out of the rooms. The floor plan gives us an
overall view of the house. Architectural design elements give us an overall view of the software

Interface design elements.(interface diagram)

The interface design elements for software depict information flows into and out of a system and
how it is communicated among the components defined as part of the architecture.

Component-Level Design Elements (draw component diagram)

The component-level design for software is the equivalent to a set of detailed drawings (and
specifications) for each room in a house. These drawings depict wiring and plumbing within each
room, the location of electrical receptacles and wall switches, faucets, sinks, showers, tubs, drains,
cabinets, and closets, and every other detail associated with a room

Deployment-Level Design Elements.

Deployment-level design elements indicate how software functionality and subsystems will be
allocated within the physical computing environment that will support the software.

 21. List the steps to conduct component level design

The following steps represent a typical task set for component-level design, when it is applied for
an object-oriented system.
Step1. Identify all design classes that correspond to the problem domain. Using the
requirements and architectural model, each analysis class and architectural component is
elaborated
Step 2. Identify all design classes that correspond to the infrastructure domain. These classes
are not described in the requirements model and are often missing from the architecture model,
but they must be described at this point. Classes and components in this category include GUI
components (often available as reusable components), operating system components, and object
and data management components.
Step3. Elaborate all design classes that are not acquired as reusable components. Elaboration
requires that all interfaces, attributes, and operations necessary to implement the class be
described in detail. Design heuristics (e.g., component cohesion and coupling) must be considered
as this task is conducted.
Step3a. Specify message details when classes or components collaborate. The requirements
model makes use of a collaboration diagram to show how analysis classes collaborate with one
another. Messages that are passed between objects within a system.
Step3b. Identify appropriate interfaces for each component. Within the context of component-
level design, a UML interface is “a group of externally visible (i.e., public) operations. The interface
contains no internal structure, it has no attributes, no associations. “.
Step3c. Elaborate attributes and define data types and data structures required to
implement them. In general, data structures and types used to define attributes are defined within
the context of the programming language that is to be used for implementation.
Step3d. Describe processing flow within each operation in detail. This may be accomplished
using a programming language-based pseudo code or with a UML activity diagram. Each software
component is elaborated through a number of iterations that apply the stepwise refinement
concept.

The first iteration defines each operation as part of the design class. In every case, the operation
should be characterized in a way that ensures high cohesion; that is, the operation should perform a
single targeted function or sub function. The next iteration does little more than expand the
operation name.
Step 4. Describe persistent data sources (databases and files) and identify the classes
required to manage them. Databases and files normally transcend the design description of an
individual component. In most cases, these persistent data stores are initially specified as part of
architectural design. However, as design elaboration proceeds, it is often useful to provide
additional detail about the structure and organization of these persistent data sources.
Step 5. Develop and elaborate behavioural representations for a class or component . UML
state diagrams were used as part of the requirements model to represent the externally observable
behaviour of the system and the more localized behaviour of individual analysis classes. During
component-level design, it is sometimes necessary to model the behaviour of a design class.

Step6. Elaborate deployment diagrams to provide additional implementation detail.
Deployment diagrams are used as part of architectural design and are represented in descriptor
form. In this form, major system functions are represented within the context of the computing

environment that will house them. During component-level design, deployment diagrams can be
elaborated to represent the location of key packages of components. However, components

generally are not represented individually within a component diagram. In some cases,
deployment diagrams are elaborated into instance form at this time. This means that the specific
hard- ware and operating system environment(s) that will be used is (are) specified and the

location of component packages within this environment is indicated.
Step7. Refactor every component-level design representation and always con- sider

alternatives. Design is an iterative process. The first component-level model we create will not
be as complete, consistent, or accurate as the nth iteration you apply to the model. It is essential
to refactor as design work is conducted.

22. List out the architectural considerations of software design

Economy —many software architectures suffer from unnecessary complexity driven by the
inclusion of unnecessary features or nonfunctional requirements (e.g., reusability when it serves
no purpose). The best software is uncluttered and relies on abstraction to reduce unnecessary

detail.

 Visibility —As the design model is created, architectural decisions and the reasons for them

should be obvious to software engineers who examine the model at a later time. Poor visibility
arises when important design and domain concepts are poorly communicated to those who must
complete the design and implement the system.

Spacing— Separation of concerns in a design without introducing hidden dependencies is a

desirable design concept that is sometimes referred to as spacing. Sufficient spacing leads to

modular designs, but too much spacing leads to fragmentation and loss of visibility.

Symmetry —Architectural symmetry implies that a system is consistent and balanced in its

attributes. Symmetric designs are easier to understand, comprehend, and communicate. As an
example of architectural symmetry, consider a customer account object whose life cycle is

modeled directly by a software architecture that requires both open () and close() methods.
Architectural symmetry can be both structural and behavioral. Emergence —Emergent, self-

organized behavior and control are often the key to creating scalable, efficient, and economic

software architectures. For example, many real-time software applications are event driven. The
sequence and duration of the events that define the system’s behavior is an emergent quality. It is

very difficult to plan for every possible sequence of events. Instead the system architect should
create a flexible system that accommodates this emergent behavior.

22. List the different types of functional requirements?

 Product requirements

▪ Requirements which specify that the delivered product must behave in a particular

way e.g. execution speed, reliability, etc.
 Organisational requirements

▪ Requirements which are a consequence of organisational policies and procedures
e.g. process standards used, implementation requirements, etc.

 External requirements

▪ Requirements which arise from factors which are external to the system and its
development process e.g. interoperability requirements, legislative requirements,

etc.

23. explain Use case with a use case diagram

24. Explain about the functional and nonfunctional requirements of library management
system.

1. Any library member should be able to search books by their title, author,
subject category as well by the publication date.

2. Each book will have a unique identification number and other details
including a rack number which will help to physically locate the book.

3. There could be more than one copy of a book, and library members should be
able to check-out and reserve any copy. We will call each copy of a book, a
book item.

4. The system should be able to retrieve information like who took a particular
book or what are the books checked-out by a specific library member.

5. There should be a maximum limit (5) on how many books a member can
check-out.

6. There should be a maximum limit (10) on how many days a member can
keep a book.

7. The system should be able to collect fines for books returned after the due
date.

8. Members should be able to reserve books that are not currently available.

9. The system should be able to send notifications whenever the reserved
books become available, as well as when the book is not returned within the
due date.

10. Each book and member card will have a unique barcode. The system will be
able to read barcodes from books and members’ library cards.

Non functional requirements

1. Error handling : LMS product shall handle expected and non-expected errors in
 ways that prevent loss in information and long downtime period.

2. Performance Requirements. The system shall accommodate high number of

books and users without any fault.• Responses to view information shall take no

longer than 5 seconds to appear on the screen.

3. Safety Requirements: System use shall not cause any harm to human users.

4. Security Requirements: System will use secured database

• Normal users can just read information but they cannot edit or modify anything

except their• personal and some other information. System will have different

types of users and every user has access constraints.•

